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Abstract

The total synthesis of a tri¯uoromethyl (Tfm) analogue of the aspartate protease inhibitor Pepstatin has
been accomplished via incorporation of two a-Tfm-amino b-hydroxy peptide isosteres instead of the
natural statine units. The title compound as well as several Tfm-substituted precursors did not show anti-HIV
activity. # 2000 Elsevier Science Ltd. All rights reserved.
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Pepstatin1 (Fig. 1) is a natural inhibitor of peptidic aspartate proteases, including pepsin,1,2

renin,3 HIV-1,1b,4 and HIV-2 proteases.1b,5 The central statine unit is believed to mimic the
tetrahedral intermediate of peptide hydrolysis, acting as an isostere for a restricted conformation
of a dipeptide unit,2a and its stereochemistry has a large e�ect on protease inhibition, a syn
diastereomeric relationship between the amine and hydroxyl groups being required.2a,6a However,
Pepstatin is rated only as `moderately active' by NCI in a cell-based AIDS anti-viral screen.6b

Much e�ort has been directed toward the synthesis of Pepstatin mimetics in order to discover
analogues having improved properties.1b

The list includes a few ¯uorinated derivatives containing di¯uorostatine and di¯uorostatone
units, which have been reported to be potent inhibitors of Penicillopepsin.7 Replacement of the
statine isobutyl residue in the P1 position with other groups has often led to analogues with
greatly improved features.8 However, its replacement with a ¯uoroalkyl residue has never been
reported, despite the fact that ¯uoroalkyl groups are known to deeply modify physical±chemical
properties such as lipophilicity, acidity/basicity, nucleophilicity and preferred conformation, and
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that useful spectroscopic data on the binding process might be obtained by 19F NMR. This could
be due to the following reasons: (1) the requisite stereode®ned b-¯uoroalkyl b-amino alcohol
units9 have been hitherto synthetically unavailable; and (2) incorporation of a-¯uoroalkyl amino
moieties into peptidic sequences via amide bond formation is a challenging endeavour, due to the
low nucleophilicity of the NH2 function.
This is particularly true for a-tri¯uoromethyl (Tfm) amino derivatives,10a since the Tfm group

is strongly electron-withdrawing and `sterically at least as large as CH(CH3)2'.
10b Recently, we

reported a stereocontrolled route to orthogonally protected syn-(3S,4R)-g-(Tfm)GABOB 2
(Scheme 1), a new hydroxymethylene (statine) dipeptide isostere.11 In this paper we describe the
total solution-phase synthesis of the Pepstatin analogue 1 (Fig. 1), having two (Tfm)GABOB
units in place of the natural syn-(3S,4S)-statines in the P1 and P30 positions, as part of a project
aiming at the investigation of the e�ect exerted by ¯uorine atoms belonging to ¯uoroalkyl groups
on the binding process to aspartyl proteases.

In our early attempts, we tried to build the peptide 1 starting from the central g-(Tfm)GABOB
(Scheme 1). Unfortunately, the dipeptide 3, prepared by standard solution methods, failed to
undergo coupling with Cbz-Val-Val-OH under a variey of conditions (for example EDCI/HOBt
or HATU/HOAt12 in DMF±TMP at 0�C) and also with Val derived Leuchs anhydride,13 thus
evidencing the expected poor reactivity of the H-(Tfm)GABOB fragment. However, a partial
migration of the O-Bz protection to the amino group was occasionally observed under coupling
conditions. This suggested to us that an unprotected b-OH group might favor the coupling.14

Therefore, we decided to re-undertake the synthesis of 1 starting from O-unprotected statine
isosteres 7 and 9 (Scheme 2). The former was prepared from the ole®n 6, accessible via a C±C
bond forming reaction of the a-lithiated 3-butenyl-p-tolylsulfoxide 4 with the N-p methoxy-
phenylimine 5, followed by stereoselective SN2-type substitution of the sul®nyl with an hydroxy
group.11 Oxidative cleavage of 6 with KMnO4, which occurred with excellent chemoselectivity,
then treatment of 7 with diazomethane, followed by hydrogenolysis of the Cbz group of the
resulting ester 8, provided 9.

Figure 1.

Scheme 1.
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Assembling of the tripeptide fragment H-(Tfm)GABOB-Ala-(Tfm)GABOB with Iva-Val-Val-
OH was envisaged as a viable strategy to accomplish the synthesis of 1, therefore the synthesis of
the ¯uorinated tripeptide 13 was undertaken ®rst (Scheme 3). Coupling of 7 with H-Ala-OMe
(HATU/HOAt, DMF±TMP) a�orded 10, which was hydrolyzed with LiOH to the corresponding
acid 11. Satisfactorily, the key assembling of 11 with 9 a�orded good yields of 12,15 which was
hydrogenolyzed to the H2N-tripeptide 13.

The ®nal assembling of 13 with Iva-Val-Val-OH (14), prepared by standard solution-phase
technique, proved to be quite challenging (Scheme 3). In fact, under a variety of conditions (for
example HATU/HOAt both in DMF and AcOEt, or iso-BuCO2Cl/NMM in DMF) epimerization
of the second Val unit took place, a�ording the target 15 as a mixture of epimers. This trouble
was solved by using the exact conditions reported by Bartlett for the synthesis of a phosphorus-
containing analogue of Pepstatin (iso-BuCO2Cl/NMM in AcOEt)16 which provided the stereo-
chemically pure pentapeptide 15, which was hydrolyzed with LiOH in excellent yield to the ®nal
target Pepstatin analogue 1.17

The target 1 as well as precursors 7±13 were evaluated for their capacity to inhibit HIV-1
multiplication. The virus production was measured, in the presence or absence of test
compounds, by quanti®cation of the reverse transcriptase activity associated with virus particles

Scheme 2.

Scheme 3.
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released from HIV-1 Lai-infected CEM-SS in culture medium or the cytotoxicity induced by
HIV-1 IIIB replication in MT-4 cells. The cytotoxicity of the compounds was evaluated in
parallel on uninfected cells.18 At the highest concentration tested, 10 mg/ml in the case of 1, there
was no measurable antiviral or cytotoxic activity. The precursors 7±13 were used at 100 mg/ml or
less but no activity was detected.
In summary, the challenging incorporation of an a-Tfm-amino b-hydroxy peptide isostere into

a complex peptidic sequence has been successfully accomplished, producing the Tfm-Pepstatin
analogue 1 on a hundredth of a milligram scale and very good overall yield. The solution and
solid-phase synthesis of further ¯uorinated analogues of Pepstatin, as well as the elucidation of
the e�ect of ¯uoroalkyl groups on aspartyl proteases inhibition are currently under investigation.19
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